- Test for Divergence: If $\lim_{n\to\infty} a_n$ does not exist or if $\lim_{n\to\infty} a_n \neq 0$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.
- The Integral Test: Suppose f is a continuous, positive, decreasing function on $[1, \infty)$ and let • $a_n = f(n)$. Then the series $\sum_{n=1}^{\infty} a_n$ is convergent $\Leftrightarrow \int_1^{\infty} f(x) dx$ is convergent.
- The Comparison Test: Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms. (i) If $\sum b_n$ is convergent and $a_n \leq b_n$ for all n, then $\sum a_n$ is also convergent. (ii) If $\sum b_n$ is divergent and $b_n \le a_n$ for all n, then $\sum a_n$ is also divergent.
- The Limit Comparison Test: Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms. If $\lim_{n\to\infty} \frac{a_n}{b_n} = c$, • where *c* is a positive, finite number, then either both series converge or both series diverge. If the limit is zero and $\sum b_n$ is convergent, then so is $\sum a_n$. If the limit is ∞ and $\sum b_n$ is divergent, then so is $\sum a_n$.
- Two special cases:

 - If lim ^{a_n}/_{b_n} = 0 AND if ∑ b_n converges, then ∑ a_n also converges.
 If lim ^{a_n}/_{b_n} = ∞ AND if ∑ b_n diverges, then ∑ a_n also diverges.
- The Alternating Series Test: If the alternating series
 - $\sum_{n=1}^{\infty} (-1)^{n-1} b_n = b_1 b_2 + b_3 b_4 + \cdots$, where $b_n > 0$, satisfies
 - (i) $b_{n+1} \leq b_n$ for all n
 - (ii) $\lim_{n \to \infty} b_n = 0$

then the series is convergent.

- The Ratio Test: •

 - (i) If $\lim_{n \to \infty} |\frac{a_{n+1}}{a_n}| = L < 1$, then the series $\sum a_n$ is convergent (ii) If $\lim_{n \to \infty} |\frac{a_{n+1}}{a_n}| = L > 1$ or is ∞ , then the series $\sum a_n$ is divergent
 - (iii) If $\lim_{n \to \infty} |\frac{a_{n+1}}{a_n}| = 1$, the Ratio Test is inconclusive
- The Root Test:
 - (i) If $\lim_{n \to \infty} \sqrt[n]{|a_n|} = L < 1$, then the series $\sum a_n$ is convergent
 - (ii) If $\lim_{n \to \infty} \sqrt[n]{|a_n|} = L > 1$ or is ∞ , then the series $\sum a_n$ is divergent
 - (iii) If $\lim_{n \to \infty} \sqrt[n]{|a_n|} = 1$, the Root Test is inconclusive
- The remainder of a partial sum and estimating sums: Suppose $f(k) = a_k$, where f is a continuous, positive, decreasing function for $x \ge n$ and $\sum a_n$ is convergent with sum s. Then if S_n is a partial sum,
 - $R_n = s s_n = a_{n+1} + a_{n+2} + \cdots$ is the remainder in approximating s

$$\circ \quad \int_{n+1}^{\infty} f(x) \, dx \le R_n \le \int_n^{\infty} f(x) \, dx$$

 $\circ \quad s_n + \int_{n+1}^{\infty} f(x) \, dx \le s \le s_n + \int_n^{\infty} f(x) \, dx$

(continued)

Tests for Convergence Summary

• The Alternating Series Estimation Theorem: If $S = \sum_{n=1}^{\infty} (-1)^{n-1} b_n$ is a series that converges by the Alternating Series Test, then $|R_n| \le b_{n+1}$.